
  

Demosaic RTL ISP Design

Dr. Maikon Nascimento
23/Dec/2021

maikon@ualberta.ca
https://github.com/maikonadams

http://scientistengineer.blogspot.com/
https://www.linkedin.com/in/maikonadams/

https://maikon12.wixsite.com/drmaikon

[*wikipedia]

mailto:maikon@ualberta.ca
https://github.com/maikonadams
http://scientistengineer.blogspot.com/
https://www.linkedin.com/in/maikonadams/
https://maikon12.wixsite.com/drmaikon


   2

Agenda
● Introduction
● Workflow
● Octave Model
● RTL Design
● Results
● Conclusion and Future Work [xc7z020clg400-1]



   3

Introduction
● An imaging sensor with a matrix of pixels/sensors of any 

common digital camera is actually composed by a 
pattern of pixels in blocks of 2x2, where 2 diagonally 
opposed are green and the other two are red and blue. 
Which resembles a mosaic like illustrates in the picture 
above [*0].

● The Colored filters extracted from [*1] are the 
interpolation filters that uses 2 colors to interpolate and 
fill up the gaps in the matrix of pixels.

● Those filters will work together with muxes to be 
selected according to the pixel position and CFA order, 
the filters also are repeated.  

[*1]

[*1] Malvar and Cutler, High-Quality Linear Interpolation for Demosaicing 
of Bayer-Patterned Color Images

[*0]

[*0] Donald Bailey, Design for Embedded Image Processing on FPGAs



   4

Workflow Module
In

Test

Verification
Model to gen:

Inputs and 
Ref output

Expected output

In
pu

t 
ve

ct
or

R
T

L 
ou

tp
ut

● The basic framework for RTL ISP design is illustrated in the figure 
where a model is coded in Octave (a free Matlab). 

● The Octave model has a true-colour image to evaluate the 
algorithm and also generate the inputs for the RTL and the 
expected output that the RTL is compared against.

● True-colour images also can provide a reference for the overall 
algorithm performance using PSNR to compare. One of the images 
is shown here. 

● In the RTL we then compare the output of the design with the 
output of the Octave Model which is a hardware friendly version of 
the algorithm.  



   5

Octave Model
● Octave was chosen because of the similarity of Matlab and all the 

functions, and packages needed. But Matlab itself could be used, or 
Python, or any language for quick algorithm coding that also have 
libraries for writing and reading files.

● The gray image on top is the result of the true-RGB image is converted 
to a mosaiced Bayer pattern simulating a raw image from the camera 
and being converted to an input to the RTL design.

● For this algorithm a header with a few parameters were included for 
quick modification of the testing conditions such as image dimensions 
and pixel width.

● Also this model will run a hardware friendly version of the Demosaicing 
algorithm itself with floor operations for trucation of words when re-
quantization is needed, also limiting the words size based on the RTL 
bus size like: uint8 or uint16.

● Another important aspect is to decided what to do with the border which 
for this first version is padded with 0. 

● The code is on github and here I show some snaps.



   6

RTL Design
● The basic RTL architecture is shown in the figure, where the 

controller manager interfaces such as AXIS4, pixel addresses, 
valid and ready signals transmission.

● Fifo5x5 is responsible for the converting the stream of pixels into 
a 5x5 mask keeping the shape of the block.

● Router manages conditionals that might change the design 
based on the pixel position.

● And finally conv realizes the convolution, clip and clamp the 
pixels. 

● The initial tool used for this is ModelSim, but could be any 
simulation software. For debuding testbenches are also included 
and code to read and write files, which comes from the octave 
model. 

Controller

Fifo
5x5 Router Conv



   7

RTL Design - FIFO

● The image shows a 3x3 window/mask to buffering 2 rows of the frame, we use similar approach but for 
5x5 mask; 

● The fifo will buffer 4 rows and will use shift registers to shape the 5x5 grid;

● From the stream of coming pixels, this Fifo5 will output 25 pixels on parallel to the next module, the router. 

● This module is expected to consume more blocks of memory. 

[*0] Donald Bailey, Design for Embedded Image Processing on FPGAs



   8

RTL Design - Router
● The Fig. Is not from this design but represents the 

concept where the shape of filter mask may change 
according to the pixel position, which is why the router 
is needed.

● For this first version the conditional is very simple and 
when the pixel in on the border or 1st and 2nd rows or 
cols the output is 0 padding, which makes the 
calculation made only for the center and it is easy to 
model. 

● A second version will modify the filter mask to adapt it 
for the border and corner of the image.



   9

RTL Design - Convolution
● The Fig. On top shows the basic DSP block present at Zynq 

platform or 7 Series FPGAs of Xilinx, which is a decision the design 
have to make to use them instead of logic. In my first design I did 
not use initially and later I changed the coding style to infer the DSP 
tiles. 

● Because there are fracional numbers in the coeficients, a fixed 
point conversion is needed, and in the coding style I also keept the 
shape of the coeficients to be more clear for code reading. 

● A third approach of implementation is to use open the operations 
with sum and bus shifting which is possible due to the nature of the 
coeficients numbers present.

[*2] 7 Series DSP48E1 Slice 
User Guide (UG479)



   10

Results

● Left and grey image is the mosaic raw image, the right image is the output of the 
demosaic where RGB is recovered. The PSNR is 39.2 dB.  



   11

Results

● ModelSim was used for the basic development and functional validation. The image on top illustrates 
the project where text files were created by Octave with the input vector and expected output, then 
image dimensions and basic signals for verification like valid and error are there to show any error 
when comparing with Octave. In pink shows 0 errors so the design has bit accuracy. 

● In terms of FPGA performance and resource utilization we have the report from Vivado.

● The RTL and Octave can be found at: 
https://github.com/maikonadams/fpgaip/tree/master/demosaicing



   12

Results

● Pipelining more the design of the convolution keeping only 2 operands per operation and 
making sure the attribute of DSP is set to “true”, makes the DSPs blocks being infered 
reducing even more the resources utilized and increasing the max freq to 200 MHz.  

(0)

(1)

(2)

● Here just to show that a simple 
coding style decision can penalize 
the design by misleading Vivado. 
(0) shows the memory was not 
being infered using blocks of RAM.

● (1) has the blocks of RAM being 
used but no DSP and the max freq 
is 150 MHz for xc7z020.    



   13

Conclusion and Future Work
● I presented my usual methodology to develop ISP RTL design using Octave, Modelsim, 

and Vivado. The system uses real data and aims to be a professional design to be 
implemented at any FPGA interfacing an Imaging sensor.  

● My design achieved 0 bit error or bit accuracy against the Octave Model, comparisons 
were made in the RTL project.

● I also showed how to improve the max frequency by pipelining the design in the 
convolution module. My optimizations also reduces the amount of resources utilized. 

● It is still missing a demo in a live system which is the next step using DMA, AXIS4 
interface, and embedded Linux to test the design with the real images that I have.  


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

