
1

Digital Circuit Methods to Correct and Filter Noise
of Nonlinear CMOS Image Sensors

Maikon Nascimento, Jing Li, and Dileepan Joseph*
Department of Electrical and Computer Engineering, University of Alberta

Edmonton, AB T6G 1H9, Canada
*Corresponding author: dil.joseph@ualberta.ca

Abstract—Nonlinear complementary metal-oxide semiconduc-
tor (CMOS) image sensors (CISs), such as logarithmic (log) and
linear-logarithmic (linlog) sensors, achieve high/wide dynamic
ranges in single exposures at video frame rates. As with linear
CISs, fixed pattern noise (FPN) correction and salt-and-pepper
noise (SPN) filtering are required to achieve high image quality.
This paper presents a method to generate digital integrated
circuits, suitable for any monotonic nonlinear CIS, to correct FPN
in hard real time. It also presents a method to generate digital
integrated circuits, suitable for any monochromatic nonlinear
CIS, to filter SPN in hard real time. The methods are validated
by implementing and testing generated circuits using field-
programmable gate array (FPGA) tools from both Xilinx and
Altera. Generated circuits are shown to be efficient, in terms of
logic elements, memory bits, and power consumption. Scalability
of the methods to full high-definition (FHD) video processing
is also demonstrated. In particular, FPN correction and SPN
filtering of over 140 megapixels per second is feasible, in hard
real time, irrespective of the degree of nonlinearity.

I. INTRODUCTION

In a review paper, Kim [1] of Samsung has explained
the importance of high dynamic range (HDR) imaging and
examined several wide dynamic range (WDR) technologies,
based on complementary metal-oxide-semiconductor (CMOS)
image sensors (CISs), to achieve it. While “dual-exposed or
multiframe-capturing WDR sensors... will fill the role of real
WDR sensors for a while,” he concludes that “the ultimate
goal of WDR sensor technology is to physically extend the
dynamic range of a sensor, based on pixel technology,” mainly
to avoid “motion artifacts such as the ghost effect.”

As for WDR “pixel technology,” Kim prefers the linear-
logarithmic (linlog) sensor, a nonlinear CIS with a response
that transitions from linear, in dim lighting, to logarithmic
(log), in bright lighting. Whereas fixed pattern noise (FPN)
does degrade the raw image quality of linear sensors [2], the
degradation is worse with log and linlog sensors due to their
nonlinearity [3], [4]. Moreover, because of “the variation of
a knee point” (Kim’s words), the degree of nonlinearity is
greater in linlog sensors, compared to log sensors.

An image sensor is a matrix of pixel sensors, so ‘sensor’ has
two context-sensitive meanings in this paper. Because perfect
uniformity is impossible in CMOS fabrication, FPN is caused
by time-independent sensor variations from pixel to pixel [5].
The response of a linear sensor is given by an offset and a
gain. Offset variation is usually corrected by analog circuits,
implementing correlated double sampling (CDS), integrated on

the same chip [2], i.e., the linear CIS. Gain variation is usually
corrected by digital circuits, using stored data obtained via
calibration, integrated with other functions on a second chip
[6], i.e., an image signal processor (ISP).

As for circuit-based nonlinear FPN correction, literature has
addressed: analog circuits to correct offset variation only of
both log and linlog sensors [7], [8]; mixed-signal circuits to
correct both offset and gain variation of linlog sensors [9]; and
digital circuits to correct offset, gain, and bias variation of log
sensors [10]. Some authors are motivated to avoid calibration
or use self-calibration [7], [8], [9]. Other authors, like us, are
motivated to achieve the highest image quality possible and
so, as with linear sensors, adopt calibration [10].

This work contributes, validates, and evaluates a method to
generate digital circuits, suitable for ISP integration, to correct
all FPN variation, in hard real time, of ‘arbitrary’ sensors. Hard
real time means that processing occurs strictly in sync with
a clock signal, in this case the same clock that drives CIS
readout. An ‘arbitrary’ sensor is one where the response is
defined by a monotonic (non)linear function, which need not
be specified, having parameters that can vary from pixel to
pixel. This includes linear, log, and linlog sensors.

This work also contributes, validates, and evaluates a
method to generate digital circuits, suitable for ISP integration,
to filter salt-and-pepper noise (SPN) of any monochromatic
CIS. It is well known that stuck pixels, such as dead (always
dark) or hot (always bright) pixels, require correction by the
ISP with linear sensors [6]. In contrast, literature on integrated
circuits for log and linlog sensors, including the above citations
[7], [8], [9], [10], does not address SPN filtering, which like
FPN correction is affected by nonlinear responses.

The proposed digital circuit methods exploit recent software
algorithms that our group previously published [5]. In Sec-
tion II, we summarize the background algorithms and present
the novel methods under distinct sub-headings.

As described in Section III, the proposed methods are val-
idated and evaluated by generating and simulating very-high-
speed integrated circuits (VHSICs), using field-programmable
gate array (FPGA) tools, from Xilinx and Altera, and VHSIC
hardware description language (VHDL) designs. Section III
also elaborates on the novelty and significance of this work,
both of which have been introduced above.

Section IV concludes the paper by summarizing its motiva-
tion, background, methods, results, and discussion.

2

Design
Specification

Design
Entry

Synthesis

Gate Level
Model

Translation
& Mapping

Place &
Route

FPGA
Download

Functional
Simulation

Gate Level
Simulation

Timing
Simulation

Test
Bench

Generator

Design
Template

Design
Parameters

Manual
Automatic
Not done

Legend

Fig. 1. Generic FPGA design flow adopted here. The dashed box shows
aspects added to a standard design flow. Functional Simulation suffices to
demonstrate validity and estimate complexity. Timing Simulation suffices to
evaluate max frequency, of valid operation, and power consumption.

II. BACKGROUND AND METHODS

In this section, we summarize relevant background, i.e.,
software algorithms and underlying concepts, that we have
previously published. We also propose novel methods, i.e.,
digital circuit designs and a generic design flow, to implement
FPN correction and SPN filtering, for one or more copies of
an ‘arbitrary’ image sensor, in hard real time.

A. Generic Design Flow

Our digital circuits are coded in VHDL, which is a popular
hardware description language (HDL) that allows designs to
be implemented in a wide variety of technologies, such as
low-cost FPGAs, from Xilinx and Altera, or high-performance
CMOS application-specific integrated circuits (ASICs), from
TSMC, IBM, etc. However, we explain our circuits and
methods using figures, tables, equations, and words.

We target FPGA implementations, due to the preliminary
nature of our work, but occasionally we make design choices
considering ASIC implementations, anticipating future work.
Moreover, we go beyond proposing novel digital circuits for
a specific image sensor by proposing methods that generate
novel digital circuits for an ‘arbitrary’ image sensor.

These digital circuit methods are implemented using the
generic FPGA design flow shown in Fig. 1. Unlike the standard
design flow, in which Design Specification and Design Entry
are both manual, we introduce three aspects that make the
Design Entry automatic. The new aspects also add a scripting
environment, in this case MATLAB, to the standard design
flow, which otherwise needs only FPGA design tools, such as
ISE from Xilinx or Quartus from Altera.

Normally, digital circuits are realized in FPGAs as follows.
First, a high-level description, called the Design Specification,

is produced, e.g., using figures, tables, equations, and words.
Design Entry means the high-level description is coded in a
low-level HDL, which enables Functional Simulation. Using
FPGA design tools, a Gate Level Model is obtained via
Synthesis. This model, which enables Gate Level Simulation,
has more importance with ASIC implementations.

To achieve a binary file, called firmware, suitable for FPGA
Download, the design flow has aspects that target a specific
FPGA device family, such as the Xilinx Spartan-6 or the
Altera Cyclone III. Under Translation & Mapping, the design
is flattened into a single ‘netlist’, removing modular aspects,
and functional resources, i.e., logic and memory units, of the
FPGA family are allocated. Finally, Place & Route, which
enables Timing Simulation, selects and configures resources
physically available on a chosen FPGA device.

As shown in Fig. 1, instead of manual Design Entry, we
generate VHDL code automatically from a Design Template,
i.e., VHDL pseudo-code that is image sensor independent, and
Design Parameters, i.e., data that is image sensor dependent.
Using a MATLAB program, these files are processed to gen-
erate the VHDL code of a digital circuit for a specific image
sensor. Although VHDL has some capability, i.e., generics, to
support templating, we required the sophistication of MATLAB
to realize a recursive digital circuit method.

Because digital circuits are predictable and FPGA testing
tools are sophisticated, reliable results are possible without
performing FPGA Download. We use Functional Simulation
to validate operation, debugging included. Although we may
use it also to estimate complexity, i.e., logic and memory
needed, we evaluate complexity after Place & Route for 100%
accuracy. We do not use Gate Level Simulation but we do use
Timing Simulation, including static timing analysis (STA), to
evaluate max frequency and power consumption.

B. FPN Correction

In this paper, as in relevant literature, the word ‘sensor’
may mean either an image sensor or one pixel sensor thereof.
Sometimes, the meaning is specified. Sometimes, the meaning
is evident. Sometimes, either meaning works.

Background: To create an effective and efficient algorithm,
which we previously published [5], for the FPN correction
of an ‘arbitrary’ image sensor, a key concept is that FPN
correction need not invert monotonic (non)linear responses of
the pixel sensors. Using experimental data from an available
log sensor, which we previously documented [11], Fig. 2 has
been newly prepared to illustrate this concept.

Calling scene luminance x and pixel response y, in Fig. 2,
we see first that offset correction does not require computing x.
Second, the result of offset correction is still highly nonlinear
over the WDR. Although offset and gain correction is not
shown, these two observations remain true. Because the ‘knee
point’, called the bias [3], varies in this example, even offset
and gain correction cannot result in overlapping responses over
the WDR, the ideal result of FPN correction.

To improve FPN correction of log sensors, the offset, gain,
and bias (OGB) approach uses a specific model [3]:

yj = aj + bj ln(cj + xj) + εj , (1)

3

10-2 100 102 104 106

Scene Luminance (cd/m2)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

P
ix

el
 R

es
po

ns
e

(L
S

B
)

104

Before Correction (1)
Offset Correction (1)
Before Correction (2)
Offset Correction (2)
Ideal Correction

Fig. 2. FPN correction need not invert nonlinear responses. Two pixels are
shown from a log CIS having 48 × 64 pixels. Offset correction, which is
inadequate, simply adds a pixel-dependent number to each response. Ideal
correction is well approximated, in this case, using cubic polynomials.

where aj , bj , and cj are called the offset, gain, and bias
of pixel j, with 1 ≤ j ≤ n, respectively. Temporal and
quantization noise, plus residual FPN, are represented by εj
above. After calibration, using uniform luminance of varying
intensity, FPN correction is achieved as follows:

x̂j = exp((yj − âj)/b̂j)− ĉj , (2)

where âj , b̂j , and ĉj are parameters estimated by the one-time
calibration, and x̂j is the OGB correction.

The above approach is unsuitable for FPN correction of an
‘arbitrary’ sensor. As it requires inversion of the nonlinear
response, it may not even be the best approach for FPN
correction of a log sensor. Thirdly, modeling a linlog sensor
in a similar way to (1) proves complicated [4].

An alternative, i.e., our inverse polynomial regression (IPR)
approach [5], uses the following generic model:

yj = fj(xj) + εj , (3)

where fj is a monotonic (non)linear function with parameters
that vary with pixel j. We showed that FPN correction is
possible, using low-degree polynomials, as follows:

ŷj = yj + b̂j0 + yj(b̂j1 + yj(b̂j2 · · ·+ yj(b̂jq))), (4)

where b̂jk are the coefficients of degree q polynomials, with
0 ≤ k ≤ q, and ŷj is the IPR(q) correction.

Irrespective of q, IPR(q) correction requires arithmetic only.
Moreover, IPR(0) correction is simply offset correction, IPR(1)
correction equates to offset and gain correction, and IPR(3)
correction is ideal for the log sensor example of Fig. 2, over
all 3, 072 pixels [5]. The ideal response, which remains highly
nonlinear over the WDR, is shown in Fig. 2.

We also developed a fixed-point version of FPN correction
[5]. Denoting binary-point positions and word lengths as sk

and tk, respectively, double-precision coefficients b̂jk convert
to signed-integer coefficients Bjk as follows:

Bjk = round(2−sk b̂jk), (5)

|Bjk| < 2tk−1. (6)

We showed how to calculate optimal sk and tk values, given
a total word length t, in bits per pixel (bpp):

t = t0 + t1 + t2 · · ·+ tq . (7)

The binary-point shifting of (5), to scale coefficients before
rounding, means the FPN correction of (4) must be amended,
to undo the binary-point shifting, as follows:

Yj = yj + 2s0(Bj0 + 2s1−s0yj(Bj1 + 2s2−s1yj(Bj2

· · ·+ 2sq−sq−1yj(Bjq)))),
(8)

where Yj denotes the result of fixed-point IPR(q) correction.
When t is sufficiently large, the results of floating-point and
fixed-point correction are indistinguishable [5].

To complete the explanation, two additional details are
needed. First, instead of yj in the right hand side (RHS) of
(8), except the leftmost yj , we use the following:

y′j = yj − y0, (9)

where y0 is an unsigned-integer constant. Because yj , the
response of pixel j after an analog-to-digital converter (ADC),
is an unsigned integer, we use (9) to produce signed integers
where the worst-case magnitude is significantly lower. This
change allows us to significantly lower the total word length
t required by the fixed-point correction [5].

The final detail concerns binary-point, or bit, shifts in the
RHS of (8). Because s0 is expected to be non-negative in an
optimal configuration, it entails a left shift. The left shift of
an integer stays an integer. On the other hand, sk − sk−1 for
1 ≤ k ≤ q may be negative, entailing potential right shifts.
The right shift of an integer may have a fractional part. To
avoid fractional parts and reduce word lengths of intermediate
values, a round operation is performed after each shift in (8),
except the leftmost one. This turns the fixed-point correction
into a more efficient integer correction [5].

Method: Because FPN calibration is a one-time process
with no real-time constraints, there is no need to design a
circuit to implement it. The software algorithm we detailed
previously [5], implemented in MATLAB, suffices for this
purpose. However, we require a digital circuit to implement
FPN correction efficiently in hard real time. Moreover, because
we want a solution not for one nonlinear image sensor but for
a wide variety of them, we use our generic design flow, shown
in Fig. 1, to realize a digital circuit method.

Parameters of the FPN correction include: the polynomial
degree, q; the binary-point positions, sk, and word lengths, tk,
where 0 ≤ k ≤ q; the number of pixels, n; the polynomial
coefficients, Bjk, where 0 ≤ j ≤ n − 1 assuming 0-based
indexing, what VHDL uses, instead of 1-based indexing, i.e.,
1 ≤ j ≤ n, what MATLAB uses; and the word length, tADC,
of pixel responses, yj . Because FPN correction is agnostic to
the division of n pixels into n1 rows and n2 columns, where
n equals n1n2, the latter are not parameters.

4

For each pixel j, we pack the coefficients Bjk, where word
lengths tk may vary, into t-bit words denoted Bj , where t in
(7) is constant. As this is done once, it is done in MATLAB
after calibration. The resulting tn-bit data is not a part of
the proposed FPN correction circuit but is external data, e.g.,
stored in flash memory, that is repeatedly read into the circuit
synchronously with yj , the response of pixel j.

Given an image sensor design, Bj may be the only set
of parameters that needs to vary with each instance, or
fabricated copy, of the design. The remaining parameters may
be fixed, which therefore fixes the FPN correction circuit.
Whereas FPGA implementations allow circuit reconfiguration,
ASIC implementations do not. In his FPN correction work,
Hoefflinger [10] also externalized coefficients.

Fig. 3 presents a schematic, or rather multiple schematics,
of the proposed FPN correction circuit. An important feature
of the circuit is its recursive nature. The IPR(3) circuit has the
IPR(2) circuit as a sub-circuit. In turn, the IPR(2) circuit has
the IPR(1) circuit as a sub-circuit. For q > 3, the IPR(q) circuit
follows from the pattern. Even though the IPR(1) circuit has
the IPR(0) circuit as a sub-circuit, they are both special cases
as neither follows the higher-degree pattern.

Digital circuit elements may be classified as sequential
logic, operating synchronously with a clock signal, or com-
binational logic, operating asynchronously. Unlike software
algorithm steps running on central processing units (CPUs),
where parallel processing is absent or limited to a few CPU
cores, digital circuit elements always operate in parallel,
including state changes of memory bits in sequential logic.
However, the state changes happen either on rising or falling
edges, depending on design, of a clock signal.

In Fig. 3, addition (+), subtraction (−), multiplication (×),
and delay (z−1) elements are synchronous, each with a latency
of one clock cycle. Other elements are asynchronous. Digital
circuits require synchronous elements, for reliable operation
at very high speed, because of race conditions that arise in
a purely asynchronous design. A sequence of synchronous
elements with intervening asynchronous elements, as shown in
the figure, results in a pipeline circuit, which exploits parallel
processing in the fashion of an assembly line.

Elements are arranged, in Fig. 3, to illustrate the pipeline
processing. Each column of synchronous elements performs
one arithmetic operation while equally delaying other signals
required for a subsequent arithmetic operation, final one aside.
Although a pixel is corrected each clock cycle, IPR(q) correc-
tion has a latency of 2(q+1) clock cycles, for q > 0. Because
offset correction does not require (9), i.e., a subtraction, IPR(0)
correction takes exactly one clock cycle.

For high-speed operation, i.e., to increase the max frequency
of the clock signal, elements are kept as simple as possible.
The combinational logic, in Fig. 3, consists primarily of bus
operations, where a bus is a group of wires, each carrying one
bit of a digital signal. The Demux element, for ‘demultiplexer’,
partitions a t-bit bus, carrying Bj , into multiple tk-bit buses,
carrying Bjk, where 0 ≤ k ≤ q. The left-shift (�) element,
before the final addition, simply pads the incoming bus with
s0 zero-valued least significant bits (LSBs).

The right-shift (�) elements, in Fig. 3, require elaboration.

First, the value ∆sk of each shift, from left to right, is
sk − sk−1, where k goes from q to 1, respectively. Except
for positive ∆sk, in which cases a left shift is implemented
as described above, the |∆sk| LSBs of each incoming bus are
ideally discarded. However, this implements a right shift with
rounding down, which may be expressed as follows:

Y � |∆s| = b2∆sY c, (10)

where Y is the digital signal on the incoming bus.
Although convenient for a circuit implementation, using

(10) leads to bit errors because the background algorithm uses
right shifts with rounding off. Because the difference between
rounding off and rounding down is either 0 or 1, a right shift
with rounding off may be implemented as follows:

Y � |∆s| = b2∆sY c+ cout, (11)

where cout, for carry out, is a one-bit correction. This exploits
a bus operation but ensures a bit-true implementation.

For a u-bit signed-integer signal Y , the carry out, cout, of
Y � v may be calculated as follows, assuming a standard
two’s complement representation for negative values:

cout = Yv−1 ∧ (Ȳu−1 ∨ drem), (12)
drem = Yv−2 ∨ Yv−3 · · · ∨ Y0, (13)

where Yu−1 is the most significant bit (MSB) of Y (its sign
bit), Yv−1 is the MSB of the v discarded bits, and Yv−2 to
Y0 are the remaining discarded bits. Symbols ∧, ∨, and ¯ are
logical AND, OR, and NOT operators, respectively.

Addition of carry out in (11), to correct each right shift, may
actually be integrated into a following adder. In Fig. 3, every
right shift element is followed by an adder element. Standard
two-input adders always have a third one-bit input, called the
carry in, that is added to the sum of the two inputs. Therefore,
the carry out of the right shift may be directed to the carry in
of the adder. This efficiency may be readily exploited with an
ASIC implementation. With an FPGA implementation, even
though adder elements support carry in, the exact mapping of
operations to circuitry is, however, fully automatic.

To complete the digital circuit, all bus sizes in Fig. 3 must
be specified. Input signal yj and constant signal −y0, the two’s
complement of y0, are both tADC bits wide. Input signal Bj is t
bits wide. After de-multiplexing, signals Bjk are tk bits wide,
where 0 ≤ k ≤ q. Delays do not change bus sizes. The output
bus size of each adder is max(u, v), for inputs with bus sizes u
and v. While, in theory, such adders could overflow by one bit,
it is unlikely because each addition represents a perturbation
to correct, in stages, deviation from an ideal response that is
never close to the saturation limits. In the unlikely event of
overflow, the outlier would be removed by the SPN filter of
the next section. Finally, the output bus size of each multiplier
is u+ v, for inputs with bus sizes u and v.

C. SPN Filtering
Whereas we have previously disclosed our SPN filtering

approach [5], which was implemented as a software algorithm,
it was only briefly justified. Before introducing a novel digital
circuit method, we briefly review the background approach,
while offering additional justification for it.

5

Bj

Bj0

Bj1
z˗1

z˗1

Bj2

Bj3 z˗1

z˗1 z˗1

>>

z˗1

z˗1

z˗1

z˗1

z˗1

z˗1 z˗1

>>

z˗1

>>

<<

z˗1 z˗1

z˗1 z˗1 z˗1 z˗1 z˗1 z˗1 z˗1

z˗1 z˗1

-y0

yj

Yj

D
em

u
x

Fig. 3. FPN correction using a recursive pipeline circuit. This schematic shows: offset correction in black; offset and gain, i.e., linear, correction in blue and
black; quadratic correction in green, blue, and black; and cubic correction in red, green, blue, and black. Bus operations � and � represent bit shifts.

4.3e+0 2.6e+1 1.9e+2 1.5e+3 9.8e+3 7.8e+4

Scene luminance (cd/m2)

yj

Yj

Y'j

Im
ag

e
si

gn
al

Fig. 4. FPN correction and SPN filtering are complementary. To deal with
noise in raw images (top row), from a log sensor over a WDR (left to right),
both correction (middle row) and filtering (bottom row) are needed.

Background: Stuck pixels are one source of SPN, also
called impulse noise. Because stuck pixels may be identified
during calibration, instead of filtering they may be corrected
using a static procedure, similar to FPN correction.

However, with nonlinear pixels, such as the log pixels
shown in Fig. 2, pixels may appear stuck at some luminances,
behaving as outliers after FPN correction, but may contribute
useful information at other luminances. In addition, there may
be a few nonlinear pixels that are truly stuck. An SPN filtering
approach can deal with both cases dynamically.

Using experimental data from the previously-documented
log sensor [11], Fig. 4 has been newly prepared to illustrate
how FPN correction and SPN filtering are complementary.
Images are shown of six uniform scenes at three stages of
signal processing. Whereas FPN is mostly corrected by the
FPN correction, it yields SPN especially at lower light levels.
The SPN, which includes bright and dark pixels that vary with
luminance, is filtered by the SPN filtering.

Median filtering is a well known approach to dynamically
remove SPN. A median filter replaces each pixel’s response
with the median response from a local window. For simplicity,
we consider only monochromatic image sensors, avoiding the
complexities of colour filter arrays for now.

Fig. 5 illustrates the different windows used by our SPN
filter. Image dimensions are preserved because a median is
computed at every pixel. Small symmetric windows are chosen

c b d c b d c

a a

e e e

c d c b c

a a a

e e

c b d c b d c

Fig. 5. SPN filtering employs windows that vary with pixel. In each window,
pixels are coloured red except for the center pixel, which is coloured yellow.
The center pixel is replaced with the median value of its window.

to minimize distortion. For interior pixels, the pixel and four
neighbours are used. For boundary pixels, at the borders and
corners, the pixel and two neighbours are used. At the time
of our software algorithm [5], we were thinking ahead to a
circuit method. With odd-size windows, only sorting is needed
to compute medians; averaging is not needed.

Method: Fig. 6 presents a schematic of our SPN filter. We
use our generic design flow, of Fig. 1, to realize a digital
circuit method, suitable for a variety of monochromatic image
sensors, as opposed to a digital circuit, suitable for just one
set of parameters. The parameters in question are: n1 and n2,
which are the number of rows and columns, respectively, in
the n-pixel image, where n equals n1n2; and tFPN, which is
the word size of the input signal, Yj . Additional parameters,
namely trow and tcol, are explained below.

Because FPN correction precedes SPN filtering, we exploit
pipeline processing in the latter also. Whereas it does not
matter for FPN correction whether pixels are processed in row-
major or column-major order, we assume they are processed
in row-major order, for clarity, in explaining the SPN filtering.
The first row of n2 pixels is processed, one by one from left
to right, followed by the second row, and so on.

6

j-n₂

z˗(n₂-1)

z˗1

z˗1

z˗(n₂-1)

z˗1

min

maxb

c

d

e

a a'

b'

c'

d'

e'

FIFO Sorter

Yj

Router

Encoder

min

max

min

max

min

max

z˗1

min

max

z˗1

z˗1

min

max

min

max

row

col

Y'j

Fig. 6. SPN filtering using a three-stage pipeline circuit. The FIFO buffers two rows of pixel values. The sorter computes the median of five pixel values.
The ‘no-delay’ router is needed to compute medians for three-pixel windows at the image corners and borders. Table I elaborates on the router logic.

The first stage of the SPN filter is a first-in first-out (FIFO)
buffer. Its five outputs, denoted a to e in Fig. 6, are delayed
versions of the input signal, Yj . The delays are 0, n2− 1, n2,
n2 +1, and 2n2 clock cycles, respectively. They are chosen so
that, when c corresponds to an interior pixel, a to e correspond
to its five-pixel cross-shaped window, as shown in Fig. 5. Bus
sizes of the input and output signals equal tFPN.

Bypassing the second stage momentarily, the third stage of
the SPN filter is a simplified pipeline sorter of five digital
signals, e.g., FIFO outputs a to e. A five-input pipeline sorter
may be realized using multiple two-input pipeline sorters.
Although all five signals may be fully sorted with a latency of
five clock cycles, the circuit may be simplified because only
the third output, i.e., the median signal, is required. Each two-
input sorter outputs the same two signals in min-max order
with a latency of one clock cycle. Only one of the two outputs
is required in some cases. All bus sizes equal tFPN.

On their own, a combination of the above FIFO and sorter
stages would compute invalid outputs at boundary pixels,
where a five-pixel cross-shaped window cannot be formed.
One solution is to add a one-bit output signal, of the SPN filter,
to indicate validity of the main output signal, Y ′j . This solution
would require some combinational logic to distinguish interior
from boundary pixels. At a cost of some more combinational
logic, valid outputs may be computed at the boundary pixels
and the additional one-bit signal may be avoided.

The second stage of the SPN filter, between the FIFO and
the sorter in Fig. 6, is a router. The router enables median
filtering of three-pixel windows at the boundary, as shown in
Fig. 5, using the same FIFO and sorter. Mathematically, the
median of three numbers equals the median of five numbers
where two of the original three numbers are copied.

Table I elaborates on the router. The position of the center
pixel, denoted c in Figs. 5 and 6, is given by its address j. An
encoder converts the address, which is trow + tcol bits wide,
into a four-bit code. This code controls multiplexers that, at
boundary pixels, replace two of the five inputs a to e with two
selected copies. The five outputs a′ to e′ of the router, where
c′ always equals c, become inputs of the sorter.

For the above reasons, SPN filtering requires a pixel-address
input signal, unlike FPN correction. With pipeline processing,
careful attention must be given to synchronization when there
are multiple input signals. Because a equals Yj in Fig. 6, the
address of pixel c does not equal j. One solution is to use an

TABLE I
COMBINATIONAL LOGIC PERFORMED BY THE ROUTER. THE ENCODER
OUTPUTS A FOUR-BIT CODE, WHICH CONTROLS THE MULTIPLEXERS,

BASED ON THE CENTER PIXEL ADDRESS. SEE FIGS. 5 AND 6 ALSO.

Pixel address (j) Encoder a′ b′ c′ d′ e′

Corner, top-left 1010 a b c a b
Border, top 1000 b b c d d
Corner, top-right 1001 a a c d d
Border, left 0010 a a c e e
Interior 0000 a b c d e
Border, right 0001 a a c e e
Corner, bottom-left 0110 b b c e e
Border, bottom 0100 b b c d d
Corner, bottom-right 0101 d e c d e

address signal j delayed by n2 clock cycles, the delay between
c and a. Because delay elements map to memory resources,
this would increase memory use by about 50%.

The image sensor, whose output signal, yj , becomes the
input signal in Fig. 3, itself requires an address signal, j.
Addresses would be supplied in sequence by a controller
circuit, typically using counters, wholly separate from the FPN
correction and SPN filtering. We assume that, with minor
changes, e.g., extra counters, the same controller circuit could
also provide a ‘delayed’ address signal, denoted j − n2 in
Fig. 6, suitable for SPN filtering. The exact ‘delay’, imple-
mented using counters not delay elements, must also account
for the latency of FPN correction, which is 2(q + 1) clock
cycles, for q > 0, or 1 clock cycle, for q = 0.

Assuming the address signal may be demultiplexed into row
and column parts that are trow and tcol bits wide, respectively,
the logic of the encoder, in Fig. 6 and Table I, is simple. The
first two bits of the code are computed from the row address,
and the last two bits from the column address. The first bit
is one at the first row only, the second bit is one at the last
row only, the third bit is one at the first column only, and the
fourth bit is one at the last column only.

Because memory is relatively scarce in a low-cost FPGA,
our SPN filtering circuit avoids buffering a whole image frame,
i.e., all n pixels, before computing medians. Only two rows,
i.e., 2n2 pixels, are buffered, the fewest values needed to
form cross-shaped windows for interior pixels. Not only does
this reduce memory requirements from O(n) to O(

√
n) bits,

because n2 is usually proportional to
√
n, but also it reduces

latency by the same order of magnitude.

7

TABLE II
VIDEO FORMATS USED TO EVALUATE PROPOSED METHODS. FRAMES ARE

COMPOSED OF n1 SCAN LINES AND n2 PIXELS PER LINE. THE CLOCK
FREQUENCY IS THE NUMBER OF PIXELS TIMES THE FRAME RATE.

Format Pixels (n1 × n2) Rate Clock
TTVGA 3, 072 (48× 64) 30 fps 92.16 kHz
HQVGA 38, 400 (160× 240) 30 fps 1.152MHz
VGA 307, 200 (480× 640) 30 fps 9.216MHz
FHD 2, 073, 600 (1080× 1920) 30 fps 62.21MHz
4KUHD 8, 294, 400 (2160× 3840) 30 fps 248.8MHz

III. RESULTS AND DISCUSSION

Section II presented methods to generate digital circuits to
correct FPN and filter SPN in hard real time. These methods
are validated and evaluated by generating and simulating
specific circuits using FPGA tools from Xilinx and Altera.
Results are compared to the state of the art.

A. Test Benches

Using the design flow shown in Fig. 1, digital circuits
are generated for specific FPGA devices, namely the Xilinx
XC6SLX4 and the Altera EP3C5. Both Xilinx and Altera,
now part of Intel, have multiple device families. The lowest-
cost families still in production, at the time of this work, are
the Xilinx Spartan-6 [12] and the Altera Cyclone III [13]. The
chosen devices, i.e., the XC6SLX4 and the EP3C5, are the
simplest ones in these lowest-cost families.

We use ISE 14.7, from Xilinx, and Quartus 13.0, from Al-
tera, for synthesis, translation-and-mapping, place-and-route,
etc. Validation involves manual signal analysis and automatic
comparison against background software algorithms. Evalua-
tion assesses circuit complexity, max frequency, and power
consumption versus parameters of interest.

For FPN correction, the main parameter is the polynomial
degree. As 3 suffices for a log sensor [5], we considered
degrees from 0 to 5. For SPN filtering, the main parameter
is the number of pixels, or rather columns. We considered
five video formats, which specify number of pixels, division
into rows and columns, and frame rate. Power consumption
depends on clock frequency, which equals number of pixels
times frame rate, in frames per second (fps).

Table II lists three popular video formats, two of which are
high definition (HD) formats, where pixel numbers are roughly
equidistant on a log scale. They are the video graphics array
(VGA), full HD (FHD), and 4K ultra HD (4KUHD) formats.
While tenth tenth VGA (TTVGA) is a non-standard format, it
matches our log sensor prototype [11]. The half quarter VGA
(HQVGA) format, a rare standard format, fills a gap between
the TTVGA and VGA formats on a log scale.

Recalling Fig. 1, Functional Simulation after Design Entry
suffices for validation but Place & Route is needed to evaluate
complexity accurately. Timing Simulation is used to evaluate
max frequency and power consumption. The max frequency is
the highest clock frequency at which the circuit operates cor-
rectly. It is determined via STA, which identifies critical circuit
paths. A video format is supported if its clock frequency, in
Table II, is below the max frequency. Power consumption is
evaluated only for supported video formats.

B. FPN Correction

Given that the simplest FPGA devices were chosen, in
the lowest-cost device families from two leading vendors,
the following results show that the generated FPN correction
circuit is not only effective but also efficient.

Validation: Illustrated in Fig. 7, the initial validation of the
generated FPN correction circuit was done manually for a
4× 4 pixel subset of the TTVGA format, using experimental
data from a log sensor [11]. The figure shows, at left, the
input image, yj , the output image, Yj , and the FPN correction
coefficients, Bjk. Circuit parameters are given, at right.

Validation was done for the chosen Xilinx and Altera
devices. FPGA tools are used to analyze input, intermediate,
and output signals, depicted in Fig. 7, in simulated hard real
time, i.e., against a clock signal with fixed period. For a small-
format test case, the expected intermediate and output signals,
including latencies, may be calculated. For example, the first
output, Y1, may be manually calculated as follows:

y′1 = 19259− 25625 = −6366 (14)

Y1 = 19259 + 23(52 + [2−9−3(−6366)(−33

· · ·+ [2−21+9(−6366)(−16)])])

= 19771,

(15)

where square brackets indicate rounding.
As shown in Fig. 7, the correct output appears with a latency

of 6, i.e., 2(q+ 1), clock cycles, as expected. Unknown signal
values, based on initial conditions of memory elements, are
indicated with a ‘U’, as with the FPGA tools.

Manual validation on small-format test cases was key to
debugging all issues. For large-format test cases, the same
input data was processed by the generated circuit and a
MATLAB implementation of the background algorithm. The
two output data sets were compared bit-for-bit in MATLAB
to ensure a bit-true design, i.e., zero bit error.

Complexity: Given functional correctness, we then analyzed
the complexity of generated circuits, illustrated in Fig. 8,
versus polynomial degree, q. The word lengths of the pixel
response, tADC, and of the packed correction coefficients, t,
were kept constant, at 16 and 32 bits, respectively. Parameters
sk and tk were automatically determined [5].

In Fig. 8, actual data is shown using symbols, for each
FPGA device, and trends are shown using best-fit lines. Com-
plexity is measured in logic elements (LEs) and memory bits,
on the left and right y-axes, respectively. The LEs required
grows roughly linearly with degree (R2, the coefficient of
determination, equals 80% and 86% with Xilinx and Altera,
respectively). Outlier aside, i.e., degree zero with Altera, the
bits required also grows linearly with degree (R2 equals 92%
and 93% with Xilinx and Altera, respectively).

More significant than linearity perhaps, the generated FPN
correction circuits are of very low complexity relative to the
available resources, leaving plenty of LEs and bits for other
ISP operations on the same FPGA. The available resources in
the chosen devices, i.e., the simplest ones in the lowest-cost
families, are 8, 648 LEs and 297, 984 bits with Xilinx, and
10, 318 LEs and 423, 936 bits with Altera.

8

-74

-
49

-16 -19 -11

-7 16 19 20

6 26 21 17

-2 17 71 7

-17

19771 19763 19770 19781

19741 19750 19716
19731

197
35

197
10

197
24 19712

197
72

197
28

196
26 19727

……

……

……

Clock

52 -24 44 -106 38

-31 -20 -25 -16-33

…… -19 -11 -17 -7-16

UU U 19771 19763 19770

…… 19259 19907 19378 20589 19373

Quadratic FPN
6 clock delay

19259 19907 19378 20589

19373 19750 20004 19779

18927 20982 20188 19536

20860 19656 18626 20159

-
74-
49

-33 -31 -20 -25
-
16

32 37 42

12 35 41 35

-3 35 198 14
-
74-
49

52 -24 44 -106

38 13 -21 13

104 -152 -41 37

-137 24 257 47

…… ……

Yj

Bj2

Bj0

Bj1

yj

Bj2

Bj1

Bj0

…… 25625y0

yj

Yj Parameters

q

s0

s1

tADC

2

3

-9

-21

12

s2

t0

t1 11

t2 9

16

Fig. 7. Initial validation of a generated FPN correction circuit. Input, output, and intermediate signals are shown for a small-format test case. Fig. 3 elaborates
on the signals. Larger-format test cases were validated by automatic comparison of circuit and software outputs, given the same inputs.

0 1 2 3 4 5
Polynomial Degree

0

100

200

300

400

500

600

700

800

Lo
gi

c
E

le
m

en
ts

0

20

40

60

80

100

120

140

160

180

200

M
em

or
y

B
its

Xilinx Logic
Altera Logic
Xilinx Memory
Altera Memory

Fig. 8. Complexity of FPN correction vs. polynomial degree. Required LEs
and bits depend linearly on degree, Altera memory for offset correction aside.
Even so, these requirements use a tiny fraction of available resources.

Frequency: Next, we determined the maximum clock fre-
quency at which functional correctness is maintained. These
results are shown in Fig. 9 versus polynomial degree, as
before. Other parameters were unchanged.

Notwithstanding the lowest degrees, at which the generated
circuit can run faster, the max frequency is approximately
constant in both FPGAs. Reflecting on Fig. 3, each increase
in degree introduces a synchronous stage in the recursive
pipeline circuit. However, each stage is composed of parallel
circuit paths where the worst-case circuit path is of constant
complexity. This explains the trends in Fig. 9.

What is also significant is that the max frequency is high
enough, in both FPGAs, to support FPN correction of FHD
video in hard real time. Horizontal dashed lines, shown in
Fig. 9, indicate the frequencies, listed in Table II, required to
support the FHD and 4KUHD formats.

0 1 2 3 4 5
Polynomial Degree

107

108

109

M
ax

 F
re

qu
en

cy
 (

H
z)

 4KUHD

FHD

Xilinx
Altera

Fig. 9. Max frequency of FPN correction vs. polynomial degree. Except at
the lowest degrees, max frequencies are essentially independent of polynomial
degrees. FHD and simpler video formats are readily supported.

Power: Our final results, shown in Fig. 10, concern power
consumption. Because this depends on clock frequency, we
use the corresponding frequencies, listed in Table II, for the
supported video formats. We also vary the polynomial degree,
as before. Other parameters were unchanged.

In Fig. 10, total power is decomposed, using a stacked bar
graph, into static and dynamic components, and this is done
for each device. The FPGA tools enable this decomposition,
where the static consumption represents the background power
consumed by the device, an approximate constant that is
independent of the circuit and its operation.

Not only is the total power on the order of 50 mW, in
Fig. 10, but also the dynamic power is, in general, low relative
to the static power. Except for the FHD video format, where
the power increases a little and depends a little on degree, the
dynamic power is otherwise nearly constant.

9

0

20

5

40

4

P
ow

er
 (

m
W

)

60

FHD3

Degree

80

VGA

Format

2

100

HQVGA1
0 TTVGA

Xilinx Static
Xilinx Dynamic

0

20

5

40

4

P
ow

er
 (

m
W

)

60

FHD3

Degree

80

VGA

Format

2

100

HQVGA1
0 TTVGA

Altera Static
Altera Dynamic

Fig. 10. Power consumption of FPN correction vs. parameters. Except for
the FHD video format, where it increases a little, dynamic power is nearly
constant. Compared to static power, dynamic power is generally low.

C. SPN Filtering

Evaluation of the generated SPN filtering circuit proceeds
similarly to the preceding evaluation of the generated FPN
correction circuit. Therefore, we will be briefer.

Validation: Illustrated in Fig. 11, initial validation was
done manually using small-format test cases. Input (Yj) and
output (Y ′j) images are shown at left, as are circuit parameters.
Example corner, border, and interior pixels are indicated (see
legend). Waveforms are shown, at right, and they are grouped
as per Fig. 6. It is straightforward to show that all waveforms
in Fig. 11 are correct, including the latencies.

Manual validation on small-format test cases was followed
by automatic validation on large-format test cases. In the latter
situation, output from the generated circuit was compared bit-
for-bit to output from a MATLAB program, implemented
using high-level matrix-vector operations to perform median
filtering, as per Fig. 5. There was zero bit error.

Complexity: Given functional correctness, we then analyzed
the complexity of the generated circuit, illustrated in Fig. 12,
versus number of pixels, n. Each number, n, and its breakdown
into rows, n1, and columns, n2, is taken from Table II. The
word size of the input signal, tFPN, was kept constant at 16

bits. Address bus sizes, trow and tcol, were set to the minimum
values, i.e., dlog2 n1e and dlog2 n2e, respectively.

The LEs required are roughly independent of image size,
as shown in Fig. 12. However, there is a linear relationship,
on a log-log scale, between the bits required and the number
of pixels (R2 equals 99% and 100% with Xilinx and Altera,
respectively), excluding one outlier. Memory required with
Altera exactly equals the minimum bits, i.e., 2n2tFPN, needed
to implement the FIFO stage shown in Fig. 6.

What is more significant is that, relative to the available
resources in the Xilinx and Altera devices, the LEs required
are very low, e.g., 7.17% and 6.88%, respectively, for the FHD
video format. The bits required are also low, e.g., 24.7% and
14.5%, respectively, for the same video format.

Frequency: Next, we determined the maximum clock fre-
quency at which functional correctness is maintained. These
results are shown in Fig. 13 versus number of pixels, as before.
Other parameters are the same as with Fig. 12.

In Fig. 13, the max frequency is nearly constant in both
FPGAs. The fact that the LEs required are roughly constant, in
Fig. 12, largely explains this result. Max frequency is expected
to depend on circuit paths, i.e., logic not memory. Changes in
video format, such as the number of pixels, primarily affect
the memory used by the FIFO stage in Fig. 6.

What is also significant is that the max frequency is high
enough, in both FPGAs, to support SPN filtering of FHD video
in hard real time. Dashed lines, in Fig. 13, indicate the numbers
of pixels and clock frequencies, listed in Table II, required to
support the FHD and 4KUHD formats.

Power: Our final results, shown in Fig. 14, concern power
consumption for the supported video formats. We use the
numbers of pixels and clock frequencies listed in Table II.
Other parameters are the same as with Fig. 12.

Except for the FHD case, as shown in Fig. 14, dynamic
power is essentially independent of video format, with both
FPGA devices, and is lower than static power. For the FHD
video format, averaging over both FPGA devices, dynamic
power increases to a level comparable to static power, but the
total power remains on the order of 50 mW.

D. Significance

After summarizing selected results, we compare our digital
circuit for FPN correction to an analog competitor, a mixed-
signal competitor, which uses both analog and digital circuitry,
and a digital competitor. We also compare our digital circuit
for SPN filtering to a digital competitor.

Specifications: Table III summarizes the specifications of
the designed FPN correction and SPN filtering circuits for
a specific scenario, namely cubic polynomials and the FHD
video format. Other parameters are as described in Sec-
tions III-B and III-C. These circuits were also combined into
one ISP circuit, i.e., FPN correction followed by SPN filtering.
Specifications of the combined circuit, obtained in the same
way using FPGA tools, are also reported.

Percentages shown are with respect to available resources
of the chosen devices. Even for the combined circuit, LEs
required are very low relative to available logic. This leaves

10

19735 19728 19727

19771

19741

19763

19771

19763

0col

……

……

……

……

clock

row 3 3 3 3 0 0 1 1

1 2 3 2 3 0 1

19763 19770 19781 19741 19750 19716 19731 19735 19710

19763 19770 19781 19716 19731 19735 1971019750

…… U 0 19771U 19781 19741 19750 1971619770

……

U U 0U 19770 19781 19741 1975019763

U U U 0U 19763 19770 19781 1974119771

U U U UU 197710 19763

a

b

c

d

e

……

……

……

U U UU

U U UU

U U UU

U U UU

U U UU

b'

c'

d'

e'

a'

U U U U U U U U U 19770

Sorter
5 clock delay

19724

1

2

19724

FIFO

Router

U U

19731

19716

19750

19770

Filling up FIFO

Yj

Y'j Sorter

Yj

19763 19770

19741 19731

19712

19741 19728 19712 19727

19771 19763 19770 19781

19741 19750 19716 19731

19735 19710 19724 19712

19772 19728 19626 19727

Corner

Border

Interior

Legend

Y'j

……

Parameters

tFPN

n1

n2

trow

tcol

16

4

4

2

2

19770

19771

19770

0 0

0 1

19741

19763

19771

19770

19763

19771

19781

19770

19763

19731

19781

19770

19735

19741

19771

19710

19716

19750

19741

19763

……

……

……

……

……

19741

19763

19770 19781

19771 19763 19770

19731 19735

19771

1973119741

19750

19770

19724

19731

19716

Fig. 11. Initial validation of a generated SPN filtering circuit. Input, output, and intermediate signals are shown for a small-format test case. Fig. 6 elaborates
on the signals. Larger-format test cases were validated by automatic comparison of circuit and software outputs, given the same inputs.

TABLE III
SPECIFICATIONS OF DESIGNED CIRCUITS. FPN CORRECTION AND SPN FILTERING, USING CUBIC POLYNOMIALS AND FOR THE FHD VIDEO FORMAT,

WERE EVALUATED AS SEPARATE AND COMBINED CIRCUITS. LES AND BITS ARE GIVEN, IN PARENTHESES, AS A FRACTION OF AVAILABLE RESOURCES.
THE CHOSEN XILINX AND ALTERA DEVICES WERE THE SIMPLEST ONES IN THE SPARTAN-6 AND CYCLONE III FAMILIES, RESPECTIVELY.

Circuit Technology Logic Elements Memory Bits Max Frequency Static Power Dynamic Power
FPN Correction Xilinx XC6SLX4 178 (2.06%) 21 (0.01%) 222.2MHz 13.9mW 17.1mW

Altera EP3C5 261 (2.53%) 88 (0.02%) 178.6MHz 46.1mW 27.9mW
SPN Filtering Xilinx XC6SLX4 620 (7.17%) 73, 737 (24.7%) 158.7MHz 14.1mW 44.8mW

Altera EP3C5 710 (6.88%) 61, 440 (14.5%) 105.5MHz 46.2mW 31.8mW
Combined ISP Xilinx XC6SLX4 817 (9.45%) 73, 767 (24.8%) 140.8MHz 14.2mW 48.4mW

Altera EP3C5 972 (9.42%) 61, 528 (14.5%) 108.7MHz 46.2mW 42.6mW

103 104 105 106 107 108

Number of Pixels

0

100

200

300

400

500

600

700

800

Lo
gi

c
E

le
m

en
ts

103

104

105

106

M
em

or
y

B
its

Xilinx Logic
Altera Logic
Xilinx Memory
Altera Memory

Fig. 12. Complexity of SPN filtering vs. number of pixels. Required LEs are
approximately constant and use a fraction of available resources. Required
bits grow with the number of pixels but remain well below capacities.

plenty of room for logic needed by other ISP operations, e.g.,
tone mapping. Even for the combined circuit, bits required are
low relative to available memory. This leaves some room for

103 104 105 106 107 108

Number of Pixels

107

108

109

M
ax

 F
re

qu
en

cy
 (

H
z)

 4KUHD

FHD

Xilinx
Altera

Fig. 13. Max frequency of SPN filtering vs. number of pixels. The max
frequency is essentially independent of the number of pixels. FHD and simpler
video formats, listed in Table II, are readily supported.

memory needed by other ISP operations. If additional memory
or logic is needed, a different device may be selected from the
same family, or from a different family.

11

TTVGA HQVGA VGA FHD
Video Format

0

10

20

30

40

50

60

70

80

90

100
P

ow
er

 (
m

W
)

Xilinx Static
Xilinx Dynamic
Altera Static
Altera Dynamic

Fig. 14. Power consumption of SPN filtering vs. video format. Static power
is a constant and significant part of total power. Except for a jump at the FHD
video format, dynamic power is approximately constant.

When comparing the combined circuit to the separate
circuits, LEs and bits required do not exactly sum due to
optimizations. The same may be said for dynamic power.
Also, max frequency is not exactly the worst max frequency.
Due to the FIFO stage in Fig. 6, SPN filtering requires more
memory and power than FPN correction. Finally, as static
power is significant in the separate circuits, the combined
circuit achieves notable savings in total power.

Analog Competitor: De Moraes Cruz et al. [8] proposed an
analog circuit to correct offset variation only in linlog sensors.
While the circuit is simple, the signal-to-noise-and-distortion
ratio (SNDR) in the log region, which depends on temporal
noise and residual FPN, was limited to 29 dB. In our previous
work [5], [11], we demonstrated a peak SNDR (PSNDR) of
45 dB, the highest ever reported for either a log sensor, what
we used, or a linlog sensor in the log region. Higher-order
FPN correction was critical to our result.

Whereas De Moraes Cruz et al.’s self-calibration method
is intended for hard real time, they do not report any clock
frequencies of their 8 × 8 pixel prototype. They write “the
proposed calibration can be executed at least at the same rate
of a regular CDS operation,” but add that “the frame rate of the
array will not be evaluated in this work.” As shown in Table III,
our digital circuit for higher-order FPN correction can process
up to 222 megapixels per second, or 7.4 megapixels at 30 fps,
with the simplest Spartan-6 FPGA.

De Moraes Cruz et al. also do not report any measures of
power consumption. With the simplest Spartan-6 FPGA, our
digital circuit consumes 31 mW of power at the 62 megapixels
per second required for FHD video.

Mixed-Signal Competitor: To correct offset and gain varia-
tion in linlog sensors, Storm et al. [9] proposed a mixed-signal
circuit. The analog circuitry is simple and well documented,
comprising several extra transistors per pixel and per column.
Digital parts, some at chip level, adjacent to the sensor array,
and some in an external FPGA, are documented so briefly
that it is impossible to assess their complexity. The digital

circuitry provides control signals for a self-calibration process
and participates also in FPN correction.

Despite the appeal of a self-calibration process, we have
shown [5], [11] that image quality is limited with log sensors
unless higher-order FPN correction is employed. We calculate
the PSNDR [14] of Storm et al.’s imaging system, using
data they provide, to be 26 dB in the log region, which is
significantly lower than the 45 dB we achieved.

Storm et al.’s prototype, comprising a 288×352 CIS and an
FPGA, operates in hard real time at 26 fps. This corresponds to
2.6 megapixels per second. Because of timing issues with the
self-calibration process, it is unclear how the work scales. The
authors note “a maximum frame rate of 26 fps for an array of
288 rows.” From data Storm et al. provide, it is impossible
to separate out power consumption of the FPN correction.
Their imaging system used 5.3 mW of digital power, “not incl.
FPGA,” and 61–84 mW of analog power.

Our all-digital circuit is competitive on frame rate and seems
competitive on power too, while performing higher-order FPN
correction on a much larger number of pixels.

Digital Competitors: Hoefflinger [10] proposed a digital
circuit to correct OGB variation in log sensors. After FPN
calibration, by approximate curve fitting of the model given
in (1), FPN correction is implemented, using an FPGA, by
transforming the fitted model approximately into a set of
piecewise linear functions. While it is briefly explained and its
complexity not reported, the digital circuit is likely of similar
complexity to our FPN correction circuit.

Hoefflinger’s imaging systems, which consumed up to 5 W
of power, operated in hard real time. One system supported the
VGA format, i.e., 480×640 pixels at 30 fps, or 9.2 megapixels
per second. Another supported 496× 768 pixels at 38 fps, or
14 megapixels per second. It is likely that Hoefflinger’s FPN
correction, on its own, would scale to larger formats. While a
breakdown was not given, it is likely that power consumption
of his FPN correction alone, in an equivalent FPGA, would
be comparable to our reported figures.

An important difference between our digital circuit method
and Hoefflinger’s digital circuit is that our method leverages
a recently published algorithm [5], which we also developed,
that is not specific either to log sensors or (1). Hence, our
method may be applied to realize a digital circuit for FPN
correction of any monotonic nonlinear sensor, including linlog
sensors. While Choubey and Collins [4] have developed a
model, similar to but more complex than (1), for linlog sensors,
no corresponding circuit has been proposed.

Stuck pixels exist in log and linlog sensors, as in linear
sensors. However, neither De Moraes Cruz et al., nor Storm
et al., nor Hoefflinger address them. In his Stanford lecture on
the “Camera Processing Pipeline,” Pulli [6] addresses “stuck
pixels” alongside “pixel non-uniformity,” i.e., FPN, advising to
“replace with filtered values.” We show, in Fig. 4, that they are
complementary, address both, and evaluate joint complexity,
max frequency, and power consumption.

Latha and Sasikumar [15] implemented a two-stage median
filter to process 256 × 256 pixels, i.e., 66 kilopixels, with
8 bpp. They showed that their circuit filtered salt-and-pepper,
speckle, and Gaussian noise effectively. Although not reported

12

in LEs, their circuit uses a similar amount of logic to what we
report in Table III for 1080×1920 pixels, i.e., 2.0 megapixels,
with 16 bpp. While briefly explained, their circuit needs more
memory than ours, at least 100% the capacity, about 129 Kb,
of their Xilinx Spartan-II device. It is unclear, from their paper,
if their circuit also needed external memory.

While Latha and Sasikumar’s median filter operates in hard
real time, it is unclear if they determined the max frequency of
their circuit itself. The 200 MHz figure they report is simply
the rated max frequency of the Spartan-II device. Although it
is unclear at what frame rate, they report a power consumption
of 202 mW. In contrast, we use STA to reliably determine a
max frequency of 159 MHz, with our Xilinx Spartan-6 device,
for processing 31 times as many pixels in pipeline fashion. Our
circuit consumes 59 mW of power to process these pixels at
30 fps, i.e., what is required for FHD video.

IV. CONCLUSION

Kim [1] writes, in a review paper, “WDR imaging is cur-
rently a hot issue in the mobile CIS market. Many commercial
sensor providers are proposing various types of WDR sensors,
such as the [linlog] type,” an approach that he champions. Kim
also recognizes that FPN, especially in the log region, is a
serious problem with nonlinear sensors.

Li et al. [5], i.e., our recent work, propose an algorithm
for FPN correction of monotonic (non)linear sensors, which
include linear, log, and linlog sensors, using low-degree poly-
nomials. This background work is taken in a significant new
direction in the current paper. Both works use experimental
data from a log sensor [11] for validation.

The new direction includes the development, validation,
and evaluation of a digital circuit method to automatically
implement the background algorithm, for a wide variety of
parameters, effectively and efficiently in hard real time. We
also elaborate here on SPN filtering, mentioned briefly in our
previous work. A digital circuit method for SPN filtering is
similarly developed, validated, and evaluated.

To support a wide variety of parameters, such as polynomial
degree and number of pixels, a design template in VHDL and
a data file of parameters are processed by a MATLAB script
to generate a specific VHDL design. The design includes a
recursive pipeline circuit for FPN correction that could not
be implemented via VHDL generics. Using an FPGA design
flow, the design is turned into digital circuits.

For readability, design templates are explained here using
figures, tables, equations, and words. They include circuit
schematics comprising synchronous and asynchronous ele-
ments, i.e., sequential and combinational logic, where all
elements operate 100% in parallel. Image signals are processed
in pipeline fashion strictly in sync with a clock signal. This is
what guarantees hard real time performance.

We validate and evaluate our novel methods by generating
specific digital circuits, using the proposed design flow, for
a variety of parameters. We target the simplest devices in
the Xilinx Spartan-6 and Altera Cyclone III families, the
lowest-cost families in the market at the time of this work.
Evaluation assessed the complexity, max frequency, and power
consumption versus parameters of interest.

Resulting circuits were effective, with either FPGA device,
in processing FHD video, using cubic polynomials for FPN
correction, at a rate of 62 megapixels per second. Moreover,
with the Xilinx device, the FPN correction circuit functioned
correctly up to 222 megapixels per second, and the SPN
filtering circuit up to 159 megapixels per second.

The circuits were also efficient, especially the FPN correc-
tion. With the Xilinx device, the combined circuit to process
FHD video used 9.45% of the available logic, 24.8% of the
available memory, and 63 mW of power. SPN filtering aside,
the FPN correction used 2.06% of the available logic, 0.01%
of the available memory, and 31 mW of power.

In conclusion, this paper developed, validated, and evaluated
novel digital circuit methods to correct and filter noise of
nonlinear CMOS image sensors. Presented results provide
excellent benchmarks against which future analog, mixed-
signal, and digital circuits may be measured.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of the
Natural Sciences and Engineering Research Council, Canada,
and Science Without Borders, Brazil.

REFERENCES

[1] T.-C. Kim, “Wide Dynamic Range Technologies: For mobile imaging
sensor systems,” IEEE Consumer Electronics Magazine, vol. 3, pp. 30–
35, Apr. 2014.

[2] A. El Gamal and H. Eltoukhy, “CMOS image sensors,” IEEE Circuits
and Devices Magazine, vol. 21, pp. 6–20, May 2005.

[3] D. Joseph and S. Collins, “Modeling, calibration, and correction of
nonlinear illumination-dependent fixed pattern noise in logarithmic
CMOS image sensors,” IEEE Transactions on Instrumentation and
Measurement, vol. 51, pp. 996–1001, Oct. 2002.

[4] B. Choubey and S. Collins, “Models for Pixels With Wide-Dynamic-
Range Combined Linear and Logarithmic Response,” IEEE Sensors
Journal, vol. 7, pp. 1066–72, July 2007.

[5] J. Li, A. Mahmoodi, and D. Joseph, “Using Polynomials to Simplify
Fixed Pattern Noise and Photometric Correction of Logarithmic CMOS
Image Sensors,” Sensors, vol. 15, pp. 26331–52, Oct. 2015.

[6] K. Pulli, “Camera Processing Pipeline.” https://web.stanford.edu/class/
cs231m/lectures/lecture-11-camera-isp.pdf, May 2015.

[7] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and
J. Bogaerts, “A logarithmic response CMOS image sensor with on-chip
calibration,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1146–52,
Aug. 2000.

[8] C. A. de Moraes Cruz, D. W. de Lima Monteiro, E. A. Cotta, V. Fer-
reira de Lucena, and A. K. Pinto Souza, “FPN Attenuation by Reset-
Drain Actuation in the Linear-Logarithmic Active Pixel Sensor,” IEEE
Transactions on Circuits and Systems I, vol. 61, pp. 2825–33, Oct. 2014.

[9] G. Storm, R. Henderson, J. E. D. Hurwitz, D. Renshaw, K. Findlater,
and M. Purcell, “Extended Dynamic Range From a Combined Linear-
Logarithmic CMOS Image Sensor,” IEEE Journal of Solid-State Cir-
cuits, vol. 41, pp. 2095–106, Sept. 2006.

[10] B. Hoefflinger, High-Dynamic-Range (HDR) Vision, vol. 26 of Advanced
Microelectronics. Springer, 2007.

[11] A. Mahmoodi, J. Li, and D. Joseph, “Digital Pixel Sensor Array with
Logarithmic Delta-Sigma Architecture,” Sensors, vol. 13, pp. 10765–82,
Aug. 2013.

[12] Xilinx, “All Programmable FPGAs and 3D ICs.” https://www.xilinx.
com/products/silicon-devices/fpga.html, Oct. 2017.

[13] Altera, “Intel FPGAs.” https://www.altera.com/products/fpga/overview.
html, Oct. 2017.

[14] O. Skorka and D. Joseph, “Toward a digital camera to rival the human
eye,” Journal of Electronic Imaging, vol. 20, pp. 033009 1–18, Aug.
2011.

[15] T. Latha and M. Sasikumar, “A Novel Non-linear Transform Based
Image Restoration for Removing Three Kinds of Noises in Images,”
Journal of the Institution of Engineers (India): Series B, vol. 96, pp. 17–
26, Mar. 2015.

